Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We present the first results of an extensive spectroscopic survey of directly imaged planet host stars. The goal of the survey is the measurement of stellar properties and abundances of 15 elements (including C, O, and S) in these stars. In this work, we present the analysis procedure and the results for an initial set of five host stars, including some very well-known systems. We obtain C/O ratios using a combination of spectral modeling and equivalent-width measurements for all five stars. Our analysis indicates solar C/O ratios for HR 8799 (0.59 ± 0.11), 51 Eri (0.54 ± 0.14), HD 984 (0.63 ± 0.14), and GJ 504 (0.54 ± 0.14). However, we find a supersolar C/O (0.81 ± 0.14) for HD 206893 through spectral modeling. The ratios obtained using the equivalent-width method agree with those obtained using spectral modeling but have higher uncertainties (∼0.3 dex). We also calculate the C/S and O/S ratios, which will help us to better constrain planet formation, especially once planetary sulfur abundances are measured using JWST. Finally, we find no evidence of highly elevated metallicities or abundances for any of our targets, suggesting that a super metal-rich environment is not a prerequisite for large, widely separated gas planet formation. The measurement of elemental abundances beyond carbon and oxygen also provides access to additional abundance ratios, such as Mg/Si, which could aid in further modeling of their giant companions.more » « lessFree, publicly-accessible full text available January 8, 2026
-
Abstract We describe a new transit-detection algorithm designed to detect single-transit events in discontinuous Perkins INfrared Exosatellite Survey (PINES) observations of L and T dwarfs. We use this algorithm to search for transits in 131 PINES light curves and identify two transit candidates: 2MASS J18212815+1414010 (2MASS J1821+1414) and 2MASS J08350622+1953050 (2MASS J0835+1953). We disfavor 2MASS J1821+1414 as a genuine transit candidate due to the known variability properties of the source. We cannot rule out the planetary nature of 2MASS J0835+1953's candidate event and perform follow-up observations in an attempt to recover a second transit. A repeat event has yet to be observed, but these observations suggest that target variability is an unlikely cause of the candidate transit. We perform a Markov Chain Monte Carlo simulation of the light curve and estimate a planet radius ranging from 4.2 − 1.6 + 3.5 R ⊕ to 5.8 − 2.1 + 4.8 R ⊕ , depending on the host’s age. Finally, we perform an injection and recovery simulation on our light-curve sample. We inject planets into our data using measured M-dwarf planet occurrence rates and attempt to recover them using our transit-search algorithm. Our detection rates suggest that, assuming M-dwarf planet occurrence rates, we should have roughly a 1% chance of detecting a candidate that could cause the transit depth we observe for 2MASS J0835+1953. If 2MASS J0835+1953 b is confirmed, it would suggest an enhancement in the occurrence of short-period planets around L and T dwarfs in comparison to M dwarfs, which would challenge predictions from planet formation models.more » « less
-
Abstract We report the identification of 89 new systems containing ultracool dwarf companions to main-sequence stars and white dwarfs, using the citizen science project Backyard Worlds: Planet 9 and cross-reference between Gaia and CatWISE2020. 32 of these companions and 33 host stars were followed up with spectroscopic observations, with companion spectral types ranging from M7–T9 and host spectral types ranging from G2–M9. These systems exhibit diverse characteristics, from young to old ages, blue to very red spectral morphologies, potential membership to known young moving groups, and evidence of spectral binarity in nine companions. 20 of the host stars in our sample show evidence for higher-order multiplicity, with an additional 11 host stars being resolved binaries themselves. We compare this sample’s characteristics with those of the known stellar binary and exoplanet populations, and find our sample begins to fill in the gap between directly imaged exoplanets and stellar binaries on mass ratio–binding energy plots. With this study, we increase the population of ultracool dwarf companions to FGK stars by ∼42%, and more than triple the known population of ultracool dwarf companions with separations larger than 1000 au, providing excellent targets for future atmospheric retrievals.more » « less
-
Abstract The kinematics and dynamics of stellar and substellar populations within young, still-forming clusters provide valuable information for constraining theories of formation mechanisms. Using Keck II NIRSPEC+AO data, we have measured radial velocities for 56 low-mass sources within 4′ of the core of the Orion Nebula Cluster (ONC). We also remeasure radial velocities for 172 sources observed with SDSS/APOGEE. These data are combined with proper motions measured using HST ACS/WFPC2/WFC3IR and Keck II NIRC2, creating a sample of 135 sources with all three velocity components. The velocities measured are consistent with a normal distribution in all three components. We measure intrinsic velocity dispersions of ( σ v α , σ v δ , σ v r ) = (1.64 ± 0.12, 2.03 ± 0.13, 2.56 − 0.17 + 0.16 ) km s −1 . Our computed intrinsic velocity dispersion profiles are consistent with the dynamical equilibrium models from Da Rio et al. (2014) in the tangential direction but not in the line-of-sight direction, possibly indicating that the core of the ONC is not yet virialized, and may require a nonspherical potential to explain the observed velocity dispersion profiles. We also observe a slight elongation along the north–south direction following the filament, which has been well studied in previous literature, and an elongation in the line-of-sight to tangential velocity direction. These 3D kinematics will help in the development of realistic models of the formation and early evolution of massive clusters.more » « less
-
Abstract We present six epochs of optical spectropolarimetry of the Type II supernova (SN) 2023ixf ranging from ∼2 to 15 days after the explosion. Polarimetry was obtained with the Kast double spectrograph on the Shane 3 m telescope at Lick Observatory, representing the earliest such observations ever captured for an SN. We observe a high continuum polarizationpcont≈ 1% on days +1.4 and +2.5 before dropping to 0.5% on day +3.5, persisting at that level up to day +14.5. Remarkably, this change coincides temporally with the disappearance of highly ionized “flash” features. The decrease of the continuum polarization is accompanied by a ∼70° rotation of the polarization position angle (PA) as seen across the continuum. The early evolution of the polarization may indicate different geometric configurations of the electron-scattering atmosphere as seen before and after the disappearance of the emission lines associated with highly ionized species (e.g., Heii, Civ, and Niii), which are likely produced by elevated mass loss shortly prior to the SN explosion. We interpret the rapid change of polarization and PA from days +2.5 to +4.5 as the time when the SN ejecta emerge from the dense asymmetric circumstellar material (CSM). The temporal evolution of the continuum polarization and the PA is consistent with an aspherical SN explosion that exhibits a distinct geometry compared to the CSM. The rapid follow-up spectropolarimetry of SN 2023ixf during the shock ionization phase reveals an exceptionally asymmetric mass-loss process leading up to the explosion.more » « less
-
Abstract We describe the Perkins INfrared Exosatellite Survey (PINES), a near-infrared photometric search for short-period transiting planets and moons around a sample of 393 spectroscopically confirmed L- and T-type dwarfs. PINES is performed with Boston University’s 1.8 m Perkins Telescope Observatory, located on Anderson Mesa, Arizona. We discuss the observational strategy of the survey, which was designed to optimize the number of expected transit detections, and describe custom automated observing procedures for performing PINES observations. We detail the steps of the PINES Analysis Toolkit ( PAT ), software that is used to create light curves from PINES images. We assess the impact of second-order extinction due to changing precipitable water vapor on our observations and find that the magnitude of this effect is minimized in Mauna Kea Observatories J band. We demonstrate the validity of PAT through the recovery of a transit of WASP-2 b and known variable brown dwarfs, and use it to identify a new variable L/T transition object: the T2 dwarf WISE J045746.08-020719.2. We report on the measured photometric precision of the survey and use it to estimate our transit-detection sensitivity. We find that for our median brightness targets, assuming contributions from white noise only, we are sensitive to the detection of 2.5 R ⊕ planets and larger. PINES will test whether the increase in sub-Neptune-sized planet occurrence with decreasing host mass continues into the L- and T-dwarf regime.more » « less
-
Abstract We present spectroscopic confirmation of a nearby L dwarf pair, CWISE J061741.79+194512.8AB. Keck/NIRES near-infrared spectroscopy shows that the pair is composed of an L2 dwarf primary and an L4 dwarf secondary. High resolution spectroscopy of the combined light system with Keck/NIRSPEC yields a radial velocity of 29.2 ± 0.3 km s−1and a projected rotational velocity = km s−1. Our spectrophotometric distance estimate places the system at 28.2 ± 5.7 pc, significantly more distant than originally estimated in Kirkpatrick et al. The angular separation of the components is 1.″31 ± 0.″14, corresponding to a projected physical separation of 37 ± 8 au.more » « less
-
Abstract We present the discovery of CWISE J050626.96+073842.4 (CWISE J0506+0738), an L/T transition dwarf with extremely red near-infrared colors discovered through the Backyard Worlds: Planet 9 citizen science project. Photometry from UKIRT and CatWISE give a (J−K)MKOcolor of 2.97 ± 0.03 mag and aJMKO− W2 color of 4.93 ± 0.02 mag, making CWISE J0506+0738 the reddest known free-floating L/T dwarf in both colors. We confirm the extremely red nature of CWISE J0506+0738 using Keck/NIRES near-infrared spectroscopy and establish that it is a low-gravity, late-type L/T transition dwarf. The spectrum of CWISE J0506+0738 shows possible signatures of CH4absorption in its atmosphere, suggesting a colder effective temperature than other known, young, red L dwarfs. We assign a preliminary spectral type for this source of L8γ–T0γ. We tentatively find that CWISE J0506+0738 is variable at 3–5μm based on multiepoch WISE photometry. Proper motions derived from follow-up UKIRT observations combined with a radial velocity from our Keck/NIRES spectrum and a photometric distance estimate indicate a strong membership probability in theβPic moving group. A future parallax measurement will help to establish a more definitive moving group membership for this unusual object.more » « less
-
Abstract We present medium-resolution ( λ /Δ λ = 2700), near-infrared spectral standards for field L0–L2, L4, and L7–Y0 dwarfs obtained with the Near-Infrared Echellette Spectrometer on the Keck II 10 m telescope. These standards allow for detailed spectral comparative analysis of cold brown dwarfs discovered through ongoing ground-based projects such as Backyard Worlds: Planet 9, and forthcoming space-based spectral surveys such as the James Webb Space Telescope, SPHEREx, Euclid, and the Nancy Grace Roman Space Telescope.more » « less
An official website of the United States government
